Werks
This commit is contained in:
108
astar.py
Normal file
108
astar.py
Normal file
@@ -0,0 +1,108 @@
|
||||
from numpy import Infinity
|
||||
|
||||
|
||||
CELL = 0
|
||||
WALL = 1
|
||||
START = 2
|
||||
END = 3
|
||||
|
||||
|
||||
ROWS = 10
|
||||
COLS = 10
|
||||
|
||||
|
||||
class Node:
|
||||
def __init__(self, x, y) -> None:
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.gscore = Infinity
|
||||
self.fscore = Infinity
|
||||
self.celltype = CELL
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"({self.x}, {self.y})"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"({self.x}, {self.y})"
|
||||
|
||||
def g_pos(self):
|
||||
return (self.x, self.y)
|
||||
|
||||
def s_gscore(self, g):
|
||||
self.gscore = g
|
||||
|
||||
def s_fscore(self, f):
|
||||
self.fscore = f
|
||||
|
||||
def g_gscore(self):
|
||||
return self.gscore
|
||||
|
||||
def g_fscore(self):
|
||||
return self.fscore
|
||||
|
||||
def g_neighbours(self, grid):
|
||||
neighours = []
|
||||
if self.x > 0:
|
||||
neighours.append(grid[self.x - 1][self.y])
|
||||
|
||||
if self.x < ROWS - 1:
|
||||
neighours.append(grid[self.x + 1][self.y])
|
||||
|
||||
if self.y > 0:
|
||||
neighours.append(grid[self.x][self.y - 1])
|
||||
|
||||
if self.y < COLS - 1:
|
||||
neighours.append(grid[self.x][self.y + 1])
|
||||
|
||||
return filter(lambda n: n.celltype != WALL, neighours)
|
||||
|
||||
|
||||
def get_best(openset):
|
||||
if len(openset) == 1:
|
||||
return openset[0]
|
||||
|
||||
sorted = openset
|
||||
sorted.sort(key=lambda c: c.fscore)
|
||||
|
||||
return sorted[0]
|
||||
|
||||
|
||||
def manhatan_distance(node, end):
|
||||
return abs(node.x - end.x) + abs(node.y - end.y)
|
||||
|
||||
|
||||
def heuristic(node, end):
|
||||
return manhatan_distance(node, end)
|
||||
|
||||
|
||||
def reconstruct_path(cameFrom, current):
|
||||
path = [current]
|
||||
while current in cameFrom:
|
||||
current = cameFrom[current]
|
||||
path.append(current)
|
||||
return path
|
||||
|
||||
|
||||
def a_star(grid, start, end):
|
||||
openset = [start]
|
||||
cameFrom = dict()
|
||||
|
||||
start.s_gscore(0)
|
||||
start.s_fscore(heuristic(start, end))
|
||||
|
||||
while len(openset) != 0:
|
||||
current = get_best(openset)
|
||||
if current.celltype == END:
|
||||
return reconstruct_path(cameFrom, current)
|
||||
|
||||
openset.remove(current)
|
||||
for n in current.g_neighbours(grid):
|
||||
temp_gscore = current.g_gscore() + 1
|
||||
if temp_gscore < n.g_gscore():
|
||||
cameFrom[n] = current
|
||||
n.s_gscore(temp_gscore)
|
||||
n.s_fscore(temp_gscore + heuristic(n, end))
|
||||
if n not in openset:
|
||||
openset.append(n)
|
||||
|
||||
return None
|
||||
11
consts.py
Normal file
11
consts.py
Normal file
@@ -0,0 +1,11 @@
|
||||
|
||||
WIN_WIDTH = 500
|
||||
WIN_HEIGHT = 500
|
||||
|
||||
COLS = 10
|
||||
ROWS = 10
|
||||
|
||||
PADDING = 5
|
||||
|
||||
CELL_SIZE = WIN_WIDTH / COLS
|
||||
CELL_SIZE_PADDED = CELL_SIZE - PADDING * 2
|
||||
28
drawing.py
Normal file
28
drawing.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import pygame
|
||||
from pygame.locals import *
|
||||
|
||||
from consts import *
|
||||
|
||||
|
||||
def draw_cell(display, position, color):
|
||||
position = (position[0] * CELL_SIZE + PADDING, position[1] * CELL_SIZE + PADDING)
|
||||
rect = pygame.Rect(position, (40, 40))
|
||||
pygame.draw.rect(display, color, rect)
|
||||
|
||||
|
||||
def gridtoscreen(pos):
|
||||
return (pos[0] * CELL_SIZE, pos[1] * CELL_SIZE)
|
||||
|
||||
|
||||
def center_line(pos):
|
||||
return (pos[0] + CELL_SIZE / 2, pos[1] + CELL_SIZE / 2)
|
||||
|
||||
|
||||
def draw_path(display, color, path):
|
||||
if path is None:
|
||||
return
|
||||
|
||||
for i in range(0, len(path)-1):
|
||||
n1 = center_line(gridtoscreen(path[i].g_pos()))
|
||||
n2 = center_line(gridtoscreen(path[i + 1].g_pos()))
|
||||
pygame.draw.line(display, color, n1, n2, 4)
|
||||
Reference in New Issue
Block a user